Logic - Sample Questions

- 1. T/F:
 - a. $(A \land B) \Rightarrow C \ entails \ (A \Rightarrow C) \lor (B \Rightarrow C)$ True, actually equivalent use truth tables or convert to CNF
 - b. $(P \land \neg R) \Rightarrow (Q \Rightarrow R)$ can be converted into a Horn clause. **True using logical** equivalences: $P \land Q \Rightarrow R$
 - c. $(\forall x \ P(x)) \lor (\forall x \neg P(x))$ is a valid sentence. False *P* could be true sometimes but not always
 - d. $\forall x \ x = x$ is satisfiable. True (also valid)
- $\text{2.} \quad \operatorname{Consider} \left(A \vee B \right) \wedge \left(\neg A \vee C \right) \wedge \left(\neg B \vee D \right) \wedge \left(\neg C \vee G \right) \wedge \left(\neg D \vee G \right)$

Use resolution to prove that the sentence entails G.

clauses 1 and 2 resolve to $(B \vee C)$ this resolves with clause 4 to give $(B \vee G)$ this resolves with clause 3 to give $(G \vee D)$ which resolves with clause 5 to give, which resolves with the negated query to give the empty clause

- 3. Correct each logic representation of the following sentences:
 - a. "No two people have the same social security number" $\neg \exists x, y, n \; Person(x) \land Person(y) \Rightarrow (HasSS \#(x, n) \land HasSS \#(y, n))$

incorrect - uses implication with existential. Correct is

$$\neg \exists x, y, n \ Person(x) \land Person(y) \land \neg (x = y) \land (HasSS \#(x, n) \land HasSS \#(y, n))$$

b. "John's social security number is the same as Mary's" $\exists n \; HasSS \# (John, n) \land HasSS \# (Mary, n)$

correct

c. "Everyone's social security number has 9 digits"

$$\forall x, n \ Person(x) \Rightarrow (HasSS \#(x, n) \land Digits(n, 9))$$

Incorrect – says everyone has a number. Correct is:

$$\forall x, n (Person(x) \land HasSS \#(x, n)) \Rightarrow Digits(n, 9)$$

d. Rewrite the above sentences (uncorrected) using the function symbols SS# instead of the predicate HasSS#.

$$\neg \exists x, y \ Person(x) \land Person(y) \Rightarrow SS \#(x) = SS \#(y)$$

 $SS \#(John) = SS \#(Mary)$
 $\forall x \ Person(x) \Rightarrow Digits(SS \#(x), 9)$

4. Translate the following sentences into FOL using the predicates *French, Chilean, Wine, >,* and the functions *Price* and *Quality*:

a. All French wines cost more than Chilean wines.

$$\forall x \ French(x) \land Wine(x) \Rightarrow (\forall y \ Chilean(y) \land Wine(y) \Rightarrow > (Price(x), Price(y)))$$

b. The best Chilean wines are better than some French wines.

$$\exists x \ Chilean(x) \land Wine(x) \land \left(\forall y \ Chilean(y) \land Wine(y) \Rightarrow \neg > (Quality(y), Quality(x)) \right) \land \left(\exists z \ Frence$$

- 5. Show that the sentences:
 - a. $\forall x (\forall y P(x, y)) \Rightarrow Q(x)$

$$= \forall x \neg (\forall y \ P(x, y)) \lor Q(x)$$

$$= \forall x \big(\exists y \neg P(x, y)\big) \lor Q(x)$$

$$= \neg P(x, f(x)) \lor Q(x)$$

b. $\forall x \exists y (P(x, y) \Rightarrow Q(x))$

$$= \forall x \exists y \big(\neg P(x, y) \lor Q(x) \big)$$

$$= \neg P(x, f(x)) \lor Q(x)$$

are logically equivalent by converting them to CNF. Give English sentences that interpret *P* and *Q* to make the sentences true in the real world.

P could be "hates" and Q could be "misanthrope", or P could be "loves" and Q could be "philanthrope"

- 6. Assume the following propositions: BatteryDead, RadioWorks, OutOfGas, and CarStarts.
 - a. What is the total number of models? $2^4 = 16$ models
 - b. How many models are there in which the following sentence is false?

$$(RadioWorks \land CarStarts) \Rightarrow (\neg OutOfGas \land \neg BatteryDead)$$

$$R \wedge C$$
 is true in 4 models, $\neg (\neg O \wedge \neg B) = O \vee B$ is false in three of the four models

c. Is the sentence above equivalent to a set of Horn clauses?

Yes,
$$R \wedge C \Rightarrow \neg O$$
 and $R \wedge C \Rightarrow \neg B$

d. Show that the sentence above is not entailed by the sentence $RadioWorks \Rightarrow \neg BatteryDead$

Find a model in which sentence 2 is true and sentence 1 is false, i.e. R, C, O are true, B is false

- 7. Let M(x) be true if x is a mail carrier, B(x) is true if x lives in Berkeley, and K(x,y) be true if x knows y. Translate the following into FOL:
 - a. There are at least two mail carriers who live in Berkeley.

$$\exists x, y \ M(x) \land M(y) \land B(x) \land B(y) \land \neg (x = y)$$

b. All the mail carriers who live in Berkeley know each other.

$$\forall x, y \ M(x) \land M(y) \land B(x) \land B(y) \Rightarrow K(x, y)$$

8. Consider the following sentence:

$$((Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)) \Rightarrow ((Food \land Drinks) \Rightarrow Party)$$

- a. Determine, using enumeration, whether the sentence is valid, satisfiable or unsatisfiable. **Valid**
- Convert the left and right hand sides of the main implication to CNF and verify your answer to a.

$$\neg F \lor \neg D \lor P$$
 for LHS and same for RHS. Thus this is like $Q \Rightarrow Q$ which is valid

c. Use resolution to prove a.

Negate and convert to CNF:

$$\neg \big((Food \Rightarrow Party) \lor (Drinks \Rightarrow Party) \Rightarrow \big((Food \land Drinks) \Rightarrow Party \big) \big)$$

$$= ((F \Rightarrow P) \lor (D \Rightarrow P)) \land \neg (F \land D \Rightarrow P)$$

$$= (\neg F \lor \neg D \lor P) \land \big(F \big) \land \big(D \big) \land \big(\neg P \big) \text{ which resolves to empty clause, thus the}$$

original sentence is valid

- 9. Correct the following FOL translations as necessary:
 - a. Any apartment in Berkeley has lower rent than some apartments in Palo Alto.

$$\forall x (Apt(x) \land In(x, Berkeley)) \Rightarrow \exists y ((Apt(y) \land In(x, PaloAlto))) \Rightarrow \langle (Rnt(x), Rnt(y)) \rangle$$

Incorrect, should be

$$\forall x (Apt(x) \land In(x, Berkeley)) \Rightarrow \exists y ((Apt(y) \land In(y, PaloAlto)) \land < (Rnt(x), Rnt(y)))$$

b. There is exactly one apartment in Palo Alto with rent below \$1000.

$$\exists x \; Apt(x) \land In(x, PaloAlto) \land \forall y \left(Apt(y) \land In(y, PaloAlto) \land < \left(Rnt(y), Dollars(1000) \right) \right) \Rightarrow y = x$$

Incorrect, should be

$$\exists x \; Apt(x) \land In(x, PaloAlto) \land < (Rnt(x), Dollars(1000)) \land \Big(\forall y \, \big(Apt(y) \land In(y, PaloAlto) \land < \big(Rnt(x), PaloAlto) \Big) \land = (Rnt(x), PaloAlto) \land < (Rnt($$

c. If an apartment is more expensive than all apartments in Berkeley, it must be in San Francisco

$$\forall x \; Apt(x) \land (\forall y \; Apt(y) \land In(y, Berkeley) \land \gt (Rnt(x), Rnt(y))) \Rightarrow In(x, SanFrancisco)$$

Incorrect, should be

$$\forall x \ Apt(x) \land (\forall y \ Apt(y) \land In(y, Berkeley) \Rightarrow \gt (Rnt(x), Rnt(y))) \Rightarrow In(x, SanFrancisco)$$